Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Col--09	2.066 (3)	$\mathrm{Pl}-\mathrm{O} 2$	1.522 (3)
$\mathrm{Col}-\mathrm{Ol0}$	2.068 (3)	P1-03	1.528 (3)
$\mathrm{Col}-\mathrm{Oll}$	2.102 (3)	Pl-O4	1.519 (3)
Co2-012	2.061 (3)	$\mathrm{N} 1-\mathrm{Cl}$	1.491 (6)
Co2-013	2.101 (3)	$\mathrm{N} 2-\mathrm{C} 2$	1.469 (6)
Co2-O14	2.056 (3)	$\mathrm{Cl}-\mathrm{C} 2$	1.499 (7)
$\mathrm{Pl}-\mathrm{Ol}$	1.605 (3)		
O9-- Col - $\mathrm{O9}^{\prime}$	180	$\mathrm{Ol}-\mathrm{Pl}-\mathrm{O} 3$	104.4 (2)
O9--Col-O10	89.4 (1)	$\mathrm{Ol}-\mathrm{Pl}-\mathrm{O} 4$	107.8 (2)
O9-- $\mathrm{Col}-\mathrm{O} 10^{\circ}$	90.6 (1)	$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O} 3$	112.2 (2)
O10-Col-O11	91.9 (1)	$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O} 4$	113.0 (2)
O10-Col-- Oll^{i}	88.1 (1)	$\mathrm{O} 3-\mathrm{Pl}-\mathrm{O} 4$	112.1 (2)
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 2$	106.7 (2)		
Symmetry code: (i) $1-x, 1-y, 1-z$.			

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H. . A	D-H	H . . A	D...A	D—H...A
O9-H11... O^{1}	0.94	1.78	2.690 (4)	162.2
O9—- $\mathrm{H}_{12} \cdots \mathrm{O}^{11}$	0.92	1.86	2.728 (4)	155.9
$\mathrm{Ol} 0-\mathrm{H} 13 \cdots \mathrm{O}{ }^{\prime \prime}$	1.01	1.70	2.714 (4)	177.2
O10-H14. . O88'1	0.96	1.75	2.702 (4)	172.5
O11-H15 . $\mathrm{O}^{\text {¹1 }}$	0.89	1.82	2.708 (4)	176.1
O11-H16.. $\mathrm{O4}^{\prime \prime}$	0.95	1.92	2.868 (4)	173.2
O12-H17. . $\mathrm{O6}^{11}$	0.87	1.92	2.742 (4)	157.4
O12-H18...O3	0.90	1.80	2.697 (4)	175.1
O13-H19...O2	1.08	1.68	2.754 (4)	173.1
$\mathrm{O} 33-\mathrm{H} 20 \cdots \mathrm{O}^{12}$	0.89	1.89	2.753 (4)	161.0
O14-H21...O6 ${ }^{\text {¹' }}$	0.97	1.79	2.707 (4)	157.7
O14-H22.. O^{11}	0.99	1.74	2.725 (4)	172.0
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 4^{1}$	0.95	1.92	2.859 (4)	170.0
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O}^{\text {i }}$	0.95	1.86	2.764 (5)	158.8
$\mathrm{N} 2-\mathrm{H} 8 \cdots{ }^{\text {c }}{ }^{1-}$	0.95	1.76	2.694 (5)	168.9
$\mathrm{N} 2-\mathrm{H} 9 \cdots \mathrm{O}$	0.95	1.94	2.867 (5)	163.0
N2-H10 . O	0.95	2.03	2.943 (5)	161.2

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{i}{2}+z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $1-x, \frac{1}{2}+$ $y, \frac{1}{2}-z$; (iv) $1+x, y, z$.

The H atoms in the $\left[\mathrm{enH}_{2}\right]^{2+}$ cation were calculated and included in the structural model and those in the $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation were found in difference Fourier maps. All H atoms were fixed.

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, [997). Software used to prepare material for publication: TEXSAN.

This work was supported by the NSF-EPSCoR (grant No. OSR-9452893) and the DOE-EPSCoR (DE-FC02-91ER75674). We thank the National Institutes of Health for a grant in support of the purchase of a Bruker CCD SMART diffractometer (3S06GM0810225S1/M1HREV). SDH is a recipient of the NSF CAREER award from 1998 to 2002 (DMR-9733275).

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Blackburn, A. C. \& Gerkin, R. E. (1993). Acta Cryst. C49, 1271-1275. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.

Effenberger, H. (1992). Acta Cryst. C48, 2104-2107.
Molecular Structure Corporation (1997). TEXSAN. Single Crystal Structure Analysis Sofiware. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1996). SADABS. Empirical Absorption Correction Program. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT (Version 4). Area Detector Control and Integration Sofiware. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 923-925

\{[μ-Bis(salicylidene)-1,3-propanediaminato]copper(II) $\}$ dichlorozinc(II) \dagger

Leyla Tatar, ${ }^{a}$ Orhan Atakol, ${ }^{b}$ Dinçer Ülkü ${ }^{a}$ and Mecti Aksu ${ }^{b}$
${ }^{a}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Ankara University, Ankara, Turkey. E-mail: tatar@lidya.cc.hun.edu.tr
(Received 8 February 1999; accepted 22 February 1999)

Abstract

The title compound, $\left[\mathrm{CuZnCl} \mathrm{Z}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, is a double oxygen-bridged hetero-dinuclear complex. The Cu^{2+} atom has a distorted square-planar environment involving the two O and two N atoms from the bis(salicyl-idene)-1,3-propanediaminate (SALPD ${ }^{2-}$) ligand. The average $\mathrm{Cu}-\mathrm{O}$ distance is 1.940 (3) \AA and the average $\mathrm{Cu}-\mathrm{N}$ distance is 1.966 (3) \AA. The coordination around the Zn^{2+} atom is distorted tetrahedral, with average Zn O and $\mathrm{Zn}-\mathrm{Cl}$ distances of 2.007 (3) and $2.208(1) \AA$, respectively. In the bridging plane, the $\mathrm{Zn}-\mathrm{Ol}-\mathrm{Cu}$, $\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cu}, \mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$ and $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$ angles are $102.4(1), 102.3(1), 75.0(1)$ and $78.1(1)^{\circ}$, respectively.

Comment

Zinc is an essential trace element for all living organisms, especially during development and growth. Therefore, new zinc compounds are the subject of interest in bioinorganic chemistry research (Bertini et al., 1994; Lippard \& Berg, 1994).

In the present work, a complex, (I), containing Zn^{2+} and Cu^{2+} ions was prepared, and the crystal structure of this new hetero-dinuclear complex determined. Similar hetero-dinuclear complexes have been reported in the

[^1]literature (Kato et al., 1964; Butcher \& Sinn, 1976; Aminabhavi et al., 1986).

(I)

It is frequently observed that copper complexes have a tendency to dimerize (Kato \& Muto, 1988). Dimeric metal complexes with double oxygen bridges also show magnetic superexchange interactions (Ülkü et al., 1998, and references therein). Magnetic superexchange interactions depend on the immediate environment of the bridge, as well as on the ligand arrangement about the metal atoms. The title compound is a product of the reaction between zinc(II) chloride, which is a Lewis acid, and another copper(II)-containing complex (Lewis base). The $\mathrm{Cu}^{\text {II }}$ atom has a distorted squareplanar environment, coordinated by the two $\mathrm{N}[\mathrm{Cu}-\mathrm{N} 1$ 1.960 (3) and $\mathrm{Cu}-\mathrm{N} 21.971$ (3) A] and two O atoms $[\mathrm{Cu}-\mathrm{Ol} 1.942(3)$ and $\mathrm{Cu}-\mathrm{O} 21.938(3) \AA]$ of the SALPD ${ }^{2-}$ ligand (Fig. 1). The Cu atom is located 0.0207 (5) \AA from the coordination plane. The bond angles $\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2\left[169.9(1)^{\circ}\right]$ and $\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$ [168.3(1) ${ }^{\circ}$] deviate by approximately 11° from linearity.

Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of $\left[\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}-\right.\right.\right.$ $\left.\left.\mathrm{Cl}_{2}\right)\right\}$] with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.

The $\mathrm{Zn}^{\mathrm{II}}$ atom has a distorted tetrahedral coordination, which is common for zinc(II) and copper(II) complexes (Greenwood \& Earnshaw, 1994). The Cu••ZZn
distance [3.0757 (6) \AA] is long for a direct interaction. The bridging plane ($\mathrm{Cu}-\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$) and the coordination plane $(\mathrm{Ol}-\mathrm{O} 2-\mathrm{N} 1-\mathrm{N} 2)$ around the Cu atom form a dihedral angle of $8.6(5)^{\circ}$ with respect to one another. The $\mathrm{Cu}-\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$ bridging plane in the corresponding copper complexes (Butcher \& Sinn, 1976; Atakol et al., 1997) is planar. The bridging plane $(\mathrm{Cu}-\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2)$ in the title compound is not planar. The dihedral angle between the $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$ and $\mathrm{Ol}-\mathrm{Zn}-\mathrm{O} 2$ planes is $14.0(4)^{\circ}$. The bond lengths and angles of the ligand show no unusual values. Coordination bond lengths $(\mathrm{Cu}-\mathrm{O}, \mathrm{Cu}-\mathrm{N}, \mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{Cl})$ are comparable with those reported previously (Butcher \& Sinn, 1976; Atakol et al., 1997, 1999; Ülkü et al., 1998; Uhlenbrock et al., 1996; Zelenák et al., 1996).

Experimental

The title compound was prepared in two steps. Bis(salicyl-idene)-1,3-diaminopropane ($1.410 \mathrm{~g}, 0.005 \mathrm{~mol}$) was dissolved in hot ethanol (50 ml), and ammonia solution ($20 \%, 10 \mathrm{ml}$) was added with stirring. A solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.850 \mathrm{~g}$, $0.005 \mathrm{~mol})$ in hot water (30 ml) was then added and the resulting solution set aside. After 24 h , crystals of $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{CuN}_{2} \mathrm{O}_{2}$ were filtered off and dried in an oven at 353 K . The crystals obtained $(0.344 \mathrm{~g}, 0.001 \mathrm{~mol})$ were dissolved in 1,4 -dioxane $(60.0 \mathrm{ml})$ and heated to boiling point. To this solution, ZnCl_{2} $(0.136 \mathrm{~g}, 0.001 \mathrm{~mol})$ in methanol $(10 \mathrm{ml})$ was added and the resulting solution set aside for 24 h . The crystals which formed were filtered off and dried in air. Elemental analysis for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{CuN}_{2} \mathrm{O}_{2} \mathrm{Zn}$: calculated $\mathrm{Cu} 13.24, \mathrm{Zn} \mathrm{13.62,N} 5.83$, $\mathrm{Cl} 14.77 \%$; observed $\mathrm{Cu} 13.19, \mathrm{Zn} 13.79$, N 5.49, Cl 14.63%.

Crystal data
$\left[\mathrm{CuZnCl} \mathrm{Z}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=480.158$
Monoclinic
$P 2_{1} / c$
$a=11.6166(9) \AA$
$b=8.2634$ (8) \AA
$c=18.2929(18) \AA$
$\beta=98.856(7)^{\circ}$
$V=1734.9(3) \AA^{3}$
$Z=4$
$D_{x}=1.8382 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scans
(Fair, 1990)
$T_{\text {min }}=0.657, T_{\text {max }}=0.690$
4622 measured reflections
4492 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11.24-18.11^{\circ}$
$\mu=2.929 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic
$0.175 \times 0.125 \times 0.125 \mathrm{~mm}$ Green

2442 reflections with

$$
I>3 \sigma(I)
$$

$R_{\text {int }}=0.019$
$\theta_{\text {max }}=28.52^{\circ}$
$h=-15 \rightarrow 15$
$k=0 \rightarrow 10$
$l=0 \rightarrow 24$
3 standard reflections frequency: 120 min intensity decay: 0.035%

Refinement

Refinement on F

$$
(\Delta / \sigma)_{\max }<0.001
$$

$R=0.031$
$w R=0.038$
$S=0.99$
2442 reflections
226 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.020 F)^{2}\right.$
$+0.075]$
Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Zn} \cdots \mathrm{Cu}$	3.0757 (6)	$\mathrm{Cu}-\mathrm{N} 2$	1.971 (3)
$\mathrm{Zn}-\mathrm{Cll}$	2.208 (1)	$\mathrm{O} 1-\mathrm{Cl}$	1.339 (5)
$\mathrm{Zn}-\mathrm{Cl} 2$	2.208 (1)	O2-C17	1.333 (5)
$\mathrm{Zn}-\mathrm{Ol}$	2.004 (3)	N - C 7	1.286 (5)
$\mathrm{Zn}-\mathrm{O} 2$	2.010 (3)	$\mathrm{N} 1-\mathrm{C} 8$	1.477 (5)
$\mathrm{Cu}-\mathrm{OI}$	1.942 (3)	$\mathrm{N} 2-\mathrm{Cl} 10$	1.497 (5)
$\mathrm{Cu}-\mathrm{O} 2$	1.938 (3)	$\mathrm{N} 2-\mathrm{C} 11$	1.282 (6)
$\mathrm{Cu}-\mathrm{Ni}$	1.960 (3)		
$\mathrm{Cll}-\mathrm{Zn}-\mathrm{Cl} 2$	116.46 (5)	$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N}$	91.2 (1)
$\mathrm{ClI}-\mathrm{Zn}-\mathrm{Ol}$	108.6 (1)	$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 2$	169.9 (1)
$\mathrm{Cl}-\mathrm{Zn}-\mathrm{O} 2$	112.6 (1)	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	168.3 (1)
$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Ol}$	119.54 (9)	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	92.2 (1)
$\mathrm{C} 22-\mathrm{Zn}-\mathrm{O} 2$	117.82 (9)	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	98.7 (1)
$\mathrm{O}-\mathrm{Zn}-\mathrm{O}_{2}$	75.0 (1)	$\mathrm{Zn}-\mathrm{Ol}-\mathrm{Cu}$	102.4 (1)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	78.1 (1)	$\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cu}$	102.3 (1)

Ring H atoms were placed geometrically $0.95 \AA$ from their parent atoms, while the other H atoms were taken from a difference map. For all H atoms, a riding model was used with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Cell refinement: CAD-4 EXPRESS. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1278). Services for accessing these data are described at the back of the journal.

References

Aminabhavi, T. M., Biradar, N. S. \& Divakar, M. C. (1986). Indian J. Chem. Ser. A, 25, 283-284.

Atakol, O., Ercan, F.. Ülkü, D. \& Yılmaz, N. (1997). Anal. Sci. 13, 1051-1052.
Atakol, O., Tatar, L., Akay, A. \& Ülkü, D. (1999). Anal. Sci. 15, 199-200.
Bertini, I., Gray, H. B., Lippard, S. J. \& Valentine, J. S. (1994). Bioinorganic Chemistry, pp. 37-102. Mill Valley: University Science Books.
Butcher, R. J. \& Sinn, E. (1976). Inorg. Chem. 15, 1604-1608.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Greenwood, N. N. \& Earnshaw, A. (1994). Chemistry of the Elements, pp. 1364-1422. Oxford: Pergamon Press.

Kato, M., Jonassen, H. B. \& Fanning, J. C. (1964). Chem. Rev. pp. 99-128.
Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Lippard, S. J. \& Berg, J. M. (1994). Principles of Bioinorganic Chemistry, pp. 178-184. Mill Valley: University Science Books.
Uhlenbrock, S., Wegner, R. \& Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731-3736.
Ülkü, D., Arıcı, C., Tahir, M. N., Atakol, O. \& Taştekin, M. (1998). Anal. Sci. 14, 455-456.
Zelenák, V., Györyova, K., Cisarova, I. \& Loub, Z. (1996). Acta Cryst. C52, 808-810.

Acta Cryst. (1999). C55, 925-928

\{[μ-Bis(salicylidene)-1,3-propane-diaminato](3-methylpyridine)copper(II)\}diiodozinc(II) \dagger

Filiz Ercan, ${ }^{a}$ Cengiz Arici, ${ }^{a}$ Abdülkadir Akay, ${ }^{b}$ Orhan Atakol ${ }^{b}$ and Dinçer Ülkü ${ }^{a}$
${ }^{a}$ Department of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Ankara University, Tandogan 06100, Ankara, Turkey.E-mail: dulku@eti.cc.hun.edu.tr

(Received 30 June 1998; accepted 23 February 1999)

Abstract

The title complex, $\left[\mathrm{CuZnI}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]$, consists of a doubly oxygen-bridged heteronuclear dimeric complex. The Cu atom has a distorted squarepyramidal environment involving two O atoms and two N atoms of the bis(salicylidene)-1,3-propanediaminate (SALPD ${ }^{2-}$) ligand, and an N atom of the 3-methylpyridine group. The $\mathrm{Cu}-\mathrm{O}$ distances in the coordination plane are 1.973 (3) and 1.974 (2) \AA, and the average $\mathrm{Cu}-\mathrm{N}$ distance is 2.088 (4) \AA. In the bridging plane, the $\mathrm{Cu}-\mathrm{O}-\mathrm{Zn}, \mathrm{O}-\mathrm{Zn}-\mathrm{O}, \mathrm{Zn}-\mathrm{O}-\mathrm{Cu}$ and $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles are $102.5(1), 76.7(1), 102.7(1)$ and $77.9(1)^{\circ}$, respectively. The dihedral angle between the coordination plane around the Cu atom and the 3-methylpyridine group is $88.4(1)^{\circ}$. The $\mathrm{Cu} \cdots \mathrm{Zn}$ distance is 3.1013 (7) \AA.

Comment

Binuclear and trinuclear metal complexes based on Schiff base ligands are of interest because of the magnetic superexchange interactions between the bridged metal ions. These polynuclear complexes have been the subject of considerable interest in our laboratory,

[^2]
[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: FRI152). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Systematic name: dichloro- $2 \kappa^{2} C l-\mu-\left\{2,2^{\prime}\right.$-[1,3-propanediylbis(nitrilomethylidyne)]diphenolato $\}-1 \kappa^{4} O, N, N^{\prime}, O^{\prime} ; 2 \kappa^{2} O, O^{\prime}-\operatorname{copper}(\mathrm{II})$ zinc(II).

[^2]: \dagger Alternative name: diiodo- $2 \kappa^{2} I$-(3-methylpyridine- $1 \kappa N$) $-\mu$ - $\left\{2,2^{\prime}\right.$ - [1,3propanediylbis(nitrilomethylidyne)]diphenolato $\}-1 \kappa^{4} O, N, N^{\prime}, O^{\prime}: 2 \kappa^{2}$ O, O^{\prime}-copper(II)zinc(II).

